Iterative algebras at work
نویسندگان
چکیده
Iterative theories, which were introduced by Calvin Elgot, formalise potentially infinite computations as unique solutions of recursive equations. One of the main results of Elgot and his coauthors is a description of a free iterative theory as the theory of all rational trees. Their algebraic proof of this fact is extremely complicated. In our paper we show that by starting with ‘iterative algebras’, that is, algebras admitting a unique solution of all systems of flat recursive equations, a free iterative theory is obtained as the theory of free iterative algebras. The (coalgebraic) proof we present is dramatically simpler than the original algebraic one. Despite this, our result is much more general: we describe a free iterative theory on any finitary endofunctor of every locally presentable category A. Reportedly, a blow from the welterweight boxer Norman Selby, also known as Kid McCoy, left one victim proclaiming, ‘It’s the real McCoy! ’.¶
منابع مشابه
Iterative Algebras for a Base
For algebras A whose type is given by an endofunctor, iterativity means that every flat equation morphism in A has a unique solution. In our previous work we proved that every object generates a free iterative algebra, and we provided a coalgebraic construction of those free algebras. Iterativity w.r.t. an endofunctor was generalized by Tarmo Uustalu to iterativity w.r.t. a “base”, i.e., a func...
متن کاملSecond dual space of little $alpha$-Lipschitz vector-valued operator algebras
Let $(X,d)$ be an infinite compact metric space, let $(B,parallel . parallel)$ be a unital Banach space, and take $alpha in (0,1).$ In this work, at first we define the big and little $alpha$-Lipschitz vector-valued (B-valued) operator algebras, and consider the little $alpha$-lipschitz $B$-valued operator algebra, $lip_{alpha}(X,B)$. Then we characterize its second dual space.
متن کاملFrom Iterative Algebras to Iterative Theories
Iterative theories introduced by Calvin Elgot formalize potentially infinite computations as solutions of recursive equations. One of the main results of Elgot and his coauthors is a description of a free iterative theory as the theory of all rational trees. Their algebraic proof of this fact is extremely complicated. In our paper we show that by starting with “iterative algebras”, i. e., algeb...
متن کاملFrom Iterative Algebras to Iterative Theories (Extended Abstract)
Iterative theories introduced by Calvin Elgot formalize potentially infinite computations as solutions of recursive equations. One of the main results of Elgot and his coauthors is a description of a free iterative theory as the theory of all rational trees. Their algebraic proof of this fact is extremely complicated. In our paper we show that by starting with “iterative algebras”, i. e., algeb...
متن کاملCompletely iterative algebras and completely iterative monads
Completely iterative theories of Calvin Elgot formalize (potentially infinite) computations as solutions of recursive equations. One of the main results of Elgot and his coauthors is that infinite trees form a free completely iterative theory. Their algebraic proof of this result is extremely complicated. We present completely iterative algebras as a new approach to the description of free comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical Structures in Computer Science
دوره 16 شماره
صفحات -
تاریخ انتشار 2006